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The pressure-induced stable and metastable phase transitions of Ti at 0 K were studied by first-principles
density-functional calculations. With the pressure from the equation of state fitting or extracted directly from
first-principles calculations, we predicted that the 0 K phase transition sequence of Ti is �→�→�→�, which
is different from the theoretic predictions in the literature. We also found that the � phase is not stable under
hydrostatic compression. The obtained stable ��→�→�→�� and metastable ��→�� phase transition pres-
sures are in a good agreement with the experimental results. We found that the equation of state based on
different fitting schemes can introduce significant errors in predicting the transition sequence of Ti. Our
calculations also show that only under −8.0 GPa, the � phase exhibits magnetism. However, it is energetically
not stable with respect to the � and � phases at low pressures.
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I. INTRODUCTION

In the past few years, group IV transition metals have
attracted tremendous interest both scientifically and techno-
logically. The technological importance of these materials is
mainly due to their high strength-to-weight ratio and excel-
lent resistance to corrosion.1 The scientific interest in these
materials stems from the fact that they have a narrow d band
in the midst of a broad s-p band, which has a critical impact
on the electronic properties and the stability of crystal struc-
tures. The electron transfer from the s-p band to the d band
under pressure plays an important role in the phase stability
of these materials.2

Among these elements, Ti is controversial in its phase
transitions at high pressures. There are five solid phases of Ti
reported in the literature: � �hcp�, � �bcc�, � �hexagonal�, �
�distorted hcp�, and � �distorted bcc�.1–8 At room tempera-
ture, Ti is known to undergo a phase transition from the �
phase to the � phase at the transition pressure ranging from
2 to 11.9 GPa.1–7 X-ray experiment by Xia et al.3 showed
that the �→� transition is the only transition at pressures up
to 87 GPa. Recently, Vohra and Spencer1 observed a new
phase transition �→� at 116 GPa by energy-dispersive
x-ray-diffraction measurements. Subsequently, Akahama et
al.2 reported another phase transition �→� at 140–145 GPa
using a monochromatic synchrotron x-ray diffraction tech-
nique. The � and � phases have the same orthorhombic struc-
ture, with space group Cmcm and atoms at the 4c Wyckoff
positions �0,y ,1 /4�.1,2 The only difference is y=0.11 for �
�Ref. 1� while y=0.295 for �.2 However, as pointed out by
the authors themselves, the stability of the � phase is sus-
pected due to the possible nonhydrostatic condition in the
transition,2 also by later theoretical studies because of its
relative high energy with respect to the � phase.9,10 Thus far,
the high-pressure �-Ti has not been observed in most of the
experiments even under extreme high pressure up to 220
GPa by Akahama et al.,2 except as claimed by Ahuja et al.11

of the observation of the �→� transition in the range of
40�80 GPa using angle-dispersive synchrotron x-ray dif-
fraction.

First-principles density-functional theory �DFT� calcula-
tions have also been used to understand the phase stability of

Ti.9–15 Ahuja et al.11 predicted the transition �→� at 57.5
GPa based on local density approximation �LDA�. Joshi
et al.10 employed the full-potential linear-augmented-plane-
wave method �FLAPW� to study the stability of � and � and
obtained that the � phase transforms to the � phase at 93
GPa. Kutepov and Kutepova15 investigated the crystal struc-
tural stability for the five phases ��, �, �, �, and �� of Ti
under pressures, using FLAPW method with full geometry
optimizations. They found the transition sequence at 0 K to
be �→�→�→�→�. Recently, Verma et al.9 used aug-
mented plane wave �APW� with local orbital �LO� method
and found that �→� and �→� transition pressures are 102
and 112 GPa, respectively. However, in all above theoretical
investigations except that of Kutepov and Kutepova,15 fixed
ratios b /a and c /a have been used for the total-energy cal-
culations. In the work of Kutepov and Kutepova,15 however,
the enthalpy curve of the � phase oscillates within the pres-
sure range of 135–145 GPa. Kutepov and Kutepova15 were
themselves skeptical about the authenticity of these oscilla-
tions and attributed them to poor Brillouin-zone sampling.15

In all the above theoretical works, none of them discussed

FIG. 1. �Color online� Calculated magnetic moment per atom as
a function of volume V /V0 �where V0 is the equilibrium volume of
�-Ti� for FM �, �, �, and fcc, and AFM �, �, and fcc phases.
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how the pressures were obtained for the Gibbs free-energy
calculations. A common practice is to fit the calculated total-
energy versus volume �E-V� data to an appropriate equation
of state �EOS�, and then obtain pressure by P=−�E /�V.
However, EOS fitting can be a significant source of error
when the free-energy difference between phases is small.
This could be a reason why the � phase is stable in some
predictions12,15 while unstable in others9 since �, �, and �
phases have very similar free energies in the phase transition
regions.

Under ambient conditions, Ti is a nonmagnetic �NM�
metal. Moruzzi and Marcus,16 however, demonstrated that
nonmagnetic transition metals can become ferromagnetic
�FM� at large volumes by first-principles calculations. They
found that �-Ti undergoes a second-order transition from
nonmagnetic to ferromagnetic phase at an expanded volume
V=1.25V0 �V0 is the calculated equilibrium volume of ��.
The ferromagnetic and antiferromagnetic �AFM� phase sta-
bilities of Ti have not been fully discussed yet.

With the aim to understand both the magnetic and struc-
tural phase stabilities of Ti with respect to pressure, we sys-
tematically investigated the structural and magnetic phase
transitions through first-principles calculations in the present
work. The stability of the high-pressure phases � and � was

carefully examined with procedures using both different
EOS fittings and direct extraction of pressures from DFT
calculations. The rest of the paper is organized as follows.
The computational method for first-principles calculations
and EOS fitting is described in Sec. II. The discussion of the
phase stability of Ti using pressure extracted directly from
first-principles calculations or EOS fitting is presented In
Sec. III. Finally, the conclusion of this work is given in Sec.
IV.

II. COMPUTATIONAL METHOD

Density-functional calculations within the generalized
gradient approximation �GGA�, as implemented in Vienna ab
initio simulation package �VASP�,17,18 were utilized in this
study. Perdew-Burke-Ernzerhof �PBE� GGA �Ref. 19� for the
exchange-correlation potential was used for all calculations.
The all-electron projector augmented plane-wave �PAW�
�Refs. 18 and 20� method was adopted. In order to avoid core
overlap at high pressure, we treated semicore states 3s and
3p as valence electrons. To be complete, fcc Ti was also
included in our calculations. For obtaining accurate total en-
ergy and stress tensor, the plane-wave basis energy cutoff
�Ecut� was set to 500 eV. Our calculations showed that sys-

FIG. 2. Calculated lattice parameters and c /a ratio �open symbols� in comparison with the experimental data �filled symbols� of Akahama
et al. �Ref. 2� for �-Ti at room temperature.

FIG. 3. Calculated lattice parameters and their ratios �open symbols� in comparison with the experimental data �filled symbols� of
Akahama et al. �Ref. 2� for �-Ti at room temperature.
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tems need to be fully relaxed with high accuracy �both large
Ecut and high k-point sampling� to mimic truly hydrostatic
compression. Hence, dense k-point samplings in the first
Brillouin zone were adopted, i.e., 27�27�15 for �-Ti, 25
�25�25 for �-Ti, 17�17�24 for �-Ti, 27�27�15 for
�-Ti, 25�25�15 for �-Ti, and 24�24�24 for fcc Ti. Full
geometry optimization at each volume was considered to be
completed when the forces exerted on the atoms were less
than 10−3 eV /Å. A high accurate static calculation using the
tetrahedron method with Blöchl corrections21 and with an
energy convergence criterion of 10−8 eV /cell was performed
after the completion of the structure relaxation.

The commonly used procedure for studying pressure-
induced transition is to compare the Gibbs free energy G as
a function of pressure. The most stable phase has the lowest
G. In order to get the pressure, different EOSs could be used
to fit the E-V data. The widely used EOSs are the Birch-
Murnaghan �BM� equation of state22 and the Vinet equation
of state.23 The Vinet EOS is more accurate for high com-

pressible materials. The third-order Birch-Murnaghan �BM3�
EOS can be expressed as

E�V� = �
n=0

3

anV−2n/3, �1�

where V is the volume of the unit cell. The E-V expression
for the Vinet EOS is much more complicated than that of the
BM EOS and can be found elsewhere.23 The minimum-
energy volume �V0� is found by minimizing energy with re-
spect to volume. The bulk modulus B0=−V0��P /�V�0 is
computed from the definition B�V�=V��2E /�V2�. Its first and
second pressure derivatives �B0� and B0�� are defined by B0�
= ��B /�P�P=0 and B0�= ��2B /�P2�P=0, respectively. However,
EOS fittings can introduce errors to G or even change phase
transition sequence when the free-energy difference is small.
On the other hand, we can extract pressure �stress� directly
from the first-principles calculations. To obtain accurate
stress, the structures should be fully relaxed with high accu-

FIG. 4. �Color online� Calculated energy differences for �, �, �,
�, �, and fcc phases with respect to � as a function of volume per
atom. For � and � phases, only the stable parts are shown in the
figure.

FIG. 5. �Color online� Calculated enthalpy differences of �, �,
�, �, �, and fcc phases with respect to � as a function of pressure.
For � and � phases, only the stable parts are shown in the figure.

FIG. 6. �Color online� Calculated enthalpy differences of Ti phases with respect to � as a function of pressure using different EOSs
fitting: �a� Vinet EOS; �b� third-order Birch-Murnaghan EOS.
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racy, although being computationally demanding. Both of
these methods are utilized in this work.

III. RESULTS AND DISCUSSION

We calculated the total energies of NM �, �, �, �, �, and
fcc phases. The total energies of FM �, �, �, and fcc, and
AFM �, �, and fcc phases were also calculated to explore
the magnetic behaviors of Ti. In Fig. 1, we show the calcu-
lated magnetic moments of FM and AFM �, �, �, �, �, and
fcc phases as a function of reduced volume V /V0 �V0 is the
equilibrium volume of �-Ti� at 0 K. It can be seen that the
FM-� phase first begins to exhibit magnetism at a volume
larger than 1.12V0, which is equivalent to a negative pressure
of −8.0 GPa. However, this FM-� phase is not stable with
respect to the � and � phases at low pressures. Therefore, we
only consider the NM �, �, �, �, �, and fcc phases in this
work.

To benchmark our high-pressure calculations, we com-
pared the calculated lattice parameters of � and � with ex-
perimental results �see Figs. 2 and 3�. Table I also lists the
optimized structural parameters and bulk modulus �B0� of Ti
with different structures. The predicted lattice parameters of
the � and � phases compare well with the experimental val-
ues. For the � phase, however, the fully relaxed lattice pa-
rameters a and c are quite different from the experimental
results of Akahama et al.2 In fact, the � phase is not stable
any more above the pressure of 71.8 GPa. The fully relaxed
structure shows that it has transformed to a bcc structure
with a /b=c /b��2 and y�0.25 in the orthorhombic
coordinates.2

The total energies of �, �, �, �, �, and fcc �relative to that

of �� by direct VASP calculations as a function of volume per
atom are depicted in Fig. 4 �All the volumes in the present
paper are in terms of per atom�. The � phase has the lowest
energy at its equilibrium volume, consistent with most theo-
retical predictions.9,12,15 Our calculations show that there is a
small interval of stability for �, while � is not stable in the
entire volume region. This result is in agreement with the
work of Verma et al.9 but contrary to the calculations of
Kutepov and Kutepova.15 Similar to the work of Kutepov
and Kutepova,15 the E-V curve of � coincides with that of �
as � becomes unstable at volumes larger than 14 Å3 when
fully relaxed, and the E-V curve of � coincides with that of �
as � becomes unstable at volumes smaller than 11.5 Å3

when fully relaxed. As a result, these two parts of E-V curves
for the � and � phases are not shown in Fig. 4. Consistent
with the above crystal structure analysis, the � phase is stable
only under pressure lower than 71.8 GPa. Above this pres-
sure, it transforms to a bcc structure under hydrostatic pres-
sure. Thus our calculation results indicate that the � phase
found by experiment probably exits only under nonhydro-
static compression. As for the � phase, it transforms to a hcp
structure at pressure lower than 32.8 GPa with b /a��3 and
y�0.167 in the orthorhombic coordinates.1

At 0 K, Gibbs free energy is equal to enthalpy H, ex-
pressed as H=E+ PV. Figure 5 shows the relative enthalpies
of Ti phases as a function of pressure with � as the reference
phase, using pressures calculated directly by VASP. Consis-
tent with the results of the E-V data, the most stable phase at
0 K under ambient pressure is �, not � which is the most
stable phase at room temperature as reported by
experiments.1–3 This can be interpreted as the entropy from
the thermal population of phonon states that stabilizes the �
phase at room temperature.24 Our calculated �→� phase

TABLE I. Optimized structural parameters and bulk modulus �B0� of Ti in different structures.

Structure Space group

Unit cell
�Å�

Positional parameters
B0

�GPa�a b c

� P63 /mmc This work 2.939 2.939 4.650 2c: 1/3, 2/3, 1/4 110

Experiment 2.920 2.920 4.717a 117�9 c

2.957 2.957 4.685b

� Im3m This work 3.255 3.255 3.255 2a: 0,0,0 106

Experiment 3.31 3.31 3.31d 87.7d

� P6 /mmm This work 4.575 4.575 2.828 1a:0, 0, 0; 2d:1/3, 2/3, 1/2 118

Experiment 4.588 4.588 2.837a 138�10 c

4.598 4.598 2.822b

� Cmcm This work 2.380 4.485 3.915e 4c: 0, 0.108, 1/4e 96

Experiment 2.388 4.484 3.915f 4c: 0, 0.10, 1/4f 143.7b

2.382 4.461 3.876g

aReference 13.
bReference 1.
cReference 7.
dLattice constants were estimated at 1173 K, and bulk modulus was evaluated from elastic constants �Ref. 8�.
eStructural parameters estimated at 115 GPa.
fStructural parameters estimated at 118 GPa �Ref. 1�.
gLattice constants estimated at 130 GPa �Ref. 2�.
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transition pressure is 104.9 GPa, which is lower than the
experimentally observed pressure of 116�4 GPa. In the
subsequent phase transition, � transforms to � at the pressure
of 107.3 GPa. The � phase is not stable in comparison with
the � phase. We also calculated the total energy of � using
the experimental a /b and c /b ratios, which has higher en-
ergy than that of � at any pressures. Thus, there are only
three phase transitions at 0 K for Ti, namely, �→�, �→�,
and �→�. The calculated transition pressures are listed in
Table II. Table III lists the calculated equilibrium volume
�V0�, the bulk modulus �B0�, and the first and second pres-
sure derivatives of bulk modulus �B0� and B0�� with different
EOSs. From Fig. 5, we can also obtain a metastable phase
transition �→� at 63 GPa, which is comparable to the ex-
trapolated value 50 GPa from the experimentally determined
phase diagram.25

Our 0 K phase transition sequence is different from the
results by Kutepov and Kutepova15 and Hao et al.12 Kutepov

and Kutepova15 predicted that the � phase is stable between
106–136 GPa while Hao et al.12 showed that the � phase is
stable between 134.9–160.8 GPa using the Vinet EOS fit-
ting, although Kutepov and Kutepova15 did not mention how
they calculated the pressure. To explore the origin of the
differences, we used Vinet EOS to fit our calculated E-V data
of all the phases using data in the whole pressure range.
The result shows that the � phase is stable between
106–122 GPa, as shown in Fig. 6�a�. These transition pres-
sures are a little lower than those of the results of Hao et al.12

We also found that the � phase is stable between
104–144 GPa using BM3 EOS, as shown is Fig. 6�b�, which
is very close to the results of Kutepov et al.12 However, our
direct VASP calculations show that the � phase is not stable in
the whole pressure region and becomes bcc when relaxed at
high pressures. Thus, one has to be very careful in using any
EOS fitting in predicting the phase transition sequence of Ti.

IV. CONCLUSIONS

We investigated the phase stability of Ti by first-principles
DFT calculations. Only under a large negative pressure,
−8.0 GPa, does the � phase exhibit magnetism, though not
stable in comparison with the � and � phases. The 0 K phase
transition sequence of Ti is predicted to be �→�→�→�
with increasing pressure. The obtained stable and metastable
phase transition pressures are in a good agreement with the
experimental results. Under hydrostatic compressions, the �
phase is stable in the pressure range of 104.9–107.3 GPa.
Total-energy calculations with full relaxation indicate that
the � phase relaxes into the bcc structure at high pressures.
We also found that highly accurate DFT calculation is critical
in obtaining the correct phase transition sequence of Ti and
extreme care should be taken when the EOS is fitted. To
verify the stability of � and � phases, more experiments with
truly hydrostatic compression will be helpful.
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